Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins

Nicholas Matzke 1 ,2, Patrick Shih3 ,4
1National Institute of Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA, 2Department of Integrative Biology, University of California, Berkeley, CA, USA, 3Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA, 4Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA

Chloroplasts and mitochondria descended from bacterial ancestors, but the dating of these primary endosymbiosis events remains very uncertain, despite their importance for our understanding of the evolution of both bacteria and eukaryotes. All phylogenetic dating in the Proterozoic and before is difficult: Significant debates surround potential fossil calibration points based on the interpretation of the Precambrian microbial fossil record, and strict molecular clock methods cannot be expected to yield accurate dates over such vast timescales because of strong heterogeneity in rates. Even with more sophisticated relaxed-clock analyses, nodes that are distant from fossil calibrations will have a very high uncertainty in dating. However, endosymbiosis events and gene duplications provide some additional information that has never been exploited in dating; namely, that certain nodes on a gene tree must represent the same events, and thus must have the same or very similar dates, even if the exact date is uncertain. We devised techniques to exploit this information: cross-calibration, in which node date calibrations are reused across a phylogeny, and cross-bracing, in which node date calibrations are formally linked in a hierarchical Bayesian model. We apply these methods to proteins with ancient duplications that have remained associated and originated from plastid and mitochondrial endosymbionts: the α and β subunits of ATP synthase and its relatives, and the EF-Tu. The methods yield reductions in dating uncertainty of 14–26% while only using date calibrations derived from phylogenetically unambiguous Phanerozoic fossils of multicellular plants and animals. Our results suggest that primary plastid endosymbiosis occurred ~900 Mya and mitochondrial endosymbiosis occurred ~1,200 Mya.